Estimating Random Delays in Modbus Network Using Experiments and General Linear Regression Neural Networks with Genetic Algorithm Smoothing
نویسندگان
چکیده
Time-varying delays adversely affect the performance of networked control systems (NCS) and in the worst-case can destabilize the entire system. Therefore, modelling network delays is important for designing NCS. However, modelling time-varying delays is challenging because of their dependence on multiple parameters such as length, contention, connected devices, protocol employed, and channel loading. Further, these multiple parameters are inherently random and delays vary in a non-linear fashion with respect to time. This makes estimating random delays challenging. This investigation presents a methodology to model delays in NCS using experiments and general regression neural network (GRNN) due to their ability to capture non-linear relationship. To compute the optimal smoothing parameter that computes the best estimates, genetic algorithm is used. The objective of the genetic algorithm is to compute the optimal smoothing parameter that minimizes the mean absolute percentage error (MAPE). Our results illustrate that the resulting GRNN is able to predict the delays with less than 3% error. The proposed delay model gives a framework to design compensation schemes for NCS subjected to time-varying delays.
منابع مشابه
Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملمقایسه روش رگرسیون غیرخطی با روشهای هوش محاسباتی در برآورد توزیع مکانی آب معادل برف در سراب کارون
In mountainous basins, snow water equivalent is usually used to evaluate water resources related to snow. In this research, based on the observed data, the snow depth and its water equivalent was studied through application of non-linear regression, artificial neural network as well as optimization of network's parameters with genetic algorithm. To this end, the estimated values by artificial n...
متن کاملPrediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)
Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.06839 شماره
صفحات -
تاریخ انتشار 2015